robKalman — a package on Robust Kalman Filtering

Peter Ruckdeschel1 \quad Bernhard Spangl2

1 Fakultät für Mathematik und Physik
Peter.Ruckdeschel@uni-bayreuth.de
www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL

2 Universität für Bodenkultur, Wien
Bernhard.Spangl@boku.ac.at
www.rali.boku.ac.at/statedv.html

\texttt{useR!} 16.06.2006
Classical Setup: Linear State-Space-Models

- State equation:
 \[X_t = F_t X_{t-1} + v_t \]

- Observation equation:
 \[Y_t = Z_t X_t + \varepsilon_t \]

- Ideal model assumption:
 \[X_0 \sim \mathcal{N}_p(a_0, \Sigma_0), \quad v_t \sim \mathcal{N}_p(0, Q_t), \quad \varepsilon_t \sim \mathcal{N}_q(0, V_t), \]
 all independent

- (preliminary ?) simplification: Hyper parameters \(F_t, Z_t, V_t, Q_t \) constant in \(t \)
Problem and classical solution

- Problem: Reconstruction of X_t by means of $Y_s, s \leq t$
- Criterium: MSE
- \Rightarrow general solution: $\mathbb{E} X_t|Y_s\}_{s \leq t}$
- Computational difficulties:
 \Rightarrow restriction to **linear** procedures
 / or: Gaussian assumptions
- \Rightarrow classical **Kalman Filter**
Kalman filter

0. Initialization ($t = 0$):

$$X_{0|0} = a_0, \quad \Sigma_{0|0} = \Sigma_0$$

1. Prediction ($t \geq 1$):

$$X_{t|t-1} = FX_{t-1|t-1}, \quad \text{Cov}(X_{t|t-1}) = \Sigma_{t|t-1} = F\Sigma_{t-1|t-1}F' + Q$$

2. Correction ($t \geq 1$):

$$X_{t|t} = X_{t|t-1} + K_t(Y_t - ZX_{t|t-1})$$

$$K_t = \Sigma_{t|t-1}Z'(Z\Sigma_{t|t-1}Z')^{-}, \quad \text{(Kalman gain)}$$

$$\text{Cov}(X_{t|t}) = \Sigma_{t|t} = \Sigma_{t|t-1} - K_tZ\Sigma_{t|t-1}$$
Types of outliers and robustification

- IOs (system intrinsic): state equation is distorted — not considered here
- AO/SOs (exogeneous): observations are distorted:
 - either error ϵ_t is affected (AO)
 - or observations Y_t are modified (SO)
- a robustifications as to AO/SOs is to
 - retain recursivity (three-step approach)
 - modify correction step \leadsto bound influence of Y_t
 - retain init./pred.step but with modified filter past $X_{t-1|t-1}$
Considered approaches

Approximate conditional mean (ACM): [Martin(79)]

- \(\dim Y_t = 1 \)
- particular model: \(Y_t \sim \text{AR}(p) \)
 - \(\rightsquigarrow X_t = (Y_t, \ldots, Y_{t-p+1}) \)
 - hyper parameters \(Z = (1, 0, \ldots, 0) \), \(V^{id} = 0 \), \(F \), \(Q \) unknown
- estimation of \(F \), \(Q \) by means of GM-Estimators
- modified Corr.step: for suitable location influence curve \(\psi \)

\[
X_{t|t} = X_{t|t-1} + \Sigma_{t|t-1}Z'\psi(Y_t - ZX_{t|t-1}) \\
Sigma_{t|t} = \Sigma_{t|t-1} - \Sigma_{t|t-1}Z'\psi'(Y_t - ZX_{t|t-1})Z\Sigma_{t|t-1}
\]
rLS filter: [P.R.(01)]

- $\dim X_t, \dim Y_t$ arbitrary, finite
- Assumes hyper parameters a_0, Z, V^{id}, F, Q known
- Modified Corr.step:

\[
X_{t|t} = X_{t|t-1} + H_b(K_t(Y_t - ZX_{t|t-1}))
\]

\[
H_b(X) = X \min\{1, b/|X|\} \quad \text{for } |\cdot| \text{ Euclidean norm}
\]

- Optimality for SO’s in some sense
Concept and strategy

Goal: package robKalman

Contents

- Kalman filter: filter, Kalman gain, covariances
- ACM-filter: filter, GM-estimator
- rLS-filter: filter, calibration of clipping height
- further recursive filters?

⇝ general interface recursiveFilter with Arguments:
 - state space model (hyper parameters)
 - functions for the init./pred./corr.step
Concept and strategy II

- Programming language
 - completely in S
 - perhaps some code in C (much) later
- Use existing infrastructure
 - package candidates
 - One dimensional: KalmanLike (package stats); time series classes: ts, its, irts, zoo, zoo.reg
 - Multivariate setting: dse bundle by Paul Gilbert; perhaps zoo?
 - use for: graphics, diagnostics, management of date/time
- Split user interface and “Kalman code”
 - internal functions: no S4-objects
 - user interface: S4-objects
Concept and strategy III

- Use of S4
 - Hierarchic Classes:
 - state space models (SSMs) (Hyper-Parameter, distributional assumptions, outlier types)
 - filter results (specific subclass of (multivariate) time series)
 - control structures for filters (tuning parameters)

- Methods:
 - filters (for different types of SSMs)
 - accessor/replacement functions
 - simulate for SSMs
 - filter diagnostics: getClippings, conf.intervals?
 - tests?

- constructors/generating functions
Implementation so far: interfaces

- preliminary, “S4-free” interfaces
 - Kalman filter (in our context) KalmanFilter
 - rLS (P.R.): rLSFilter
 - with routines for calibration at given
 - efficency in ideal model
 - contamination radius
 - ACM (B.S.) ACMfilt, ACMfilter
 - with function arGM for AR-parameters by GM-estimates
 - various ψ-functions are available:
 - Hampel (ACM-filter), Huber, Tukey (both GM-estimators)
 —see ?.psi
 - all: wrappers to recursiveFilter
Implementation so far: package robKalman

- package robKalman
 - routines gathered in package robKalman, version 0.1
 - documentation
 - demos
- required packages — all available from CRAN: methods, graphics, startupmsg, dse1, dse2, MASS, limma, robustbase
- availability: web-page setup under

http://www.uni-bayreuth.de/departments/math/org/mathe7/robKalman/
Next steps

- **OOP**
 - definition of S4 classes
 - close contact to
 - RCore,
 - Paul Gilbert,
 - possibly Gabor Grothendieck and Achim Zeileis (zoo)
 - casting/conversion functions for various time series classes

- **User interface robfilter (?)**
 - goal: four arguments: data, SSM, control-structure, filter type
 - should take various definitions of SSMs, data in various time series classes,
 - possibly simpler interfaces for ACM \(\sim\) ACMfilt-like

- **Release Schedule**
 - wait for results of discussion as to class definition
 - guess: end of 2006
Demonstration: ACMfilt

```r
## generation of data from AO model:
set.seed(361)
Eps ← as.ts(rnorm(100))
ar2 ← arima.sim(list(ar = c(1, -0.9)), 100, innov = Eps)
Binom ← rbinom(100, 1, 0.1)
Noise ← rnorm(100, sd = 10)
y ← ar2 + as.ts(Binom*Noise)

## determination of GM-estimates
y.arGM ← arGM(y, 3)

## ACM-filter
y.ACMfilt ← ACMfilt(y, y.arGM)

plot(y)
lines(y.ACMfilt$filt, col=2)
lines(ar2, col="green")
```
green: ideal time series, black: AO contam. time series, red: result ACM
Demonstration: rLSFilter

```r
## specification of SSM: (p=2, q=1)
a0 ← \textbf{c}(1, 0); S0 ← \textbf{matrix}(0, 2, 2)
F ← \textbf{matrix}(\textbf{c}(0.7, 0.5, 0.2, 0), 2, 2)
Q ← \textbf{matrix}(\textbf{c}(2, 0.5, 0.5, 1), 2, 2)
Z ← \textbf{matrix}(\textbf{c}(1, -0.5), 1, 2)
Vi ← 1;
## time horizon:
TT ← 50
## AO-contamination
mc ← -20; Vc ← 0.1; ract ← 0.1
## for calibration
r1 ← 0.1; eff1 ← 0.9

#Simulation::
X ← simulateState(a, S0, F, Q, TT)
Yid ← simulateObs(X, Z, Vi, mc, Vc, r=0)
Yre ← simulateObs(X, Z, Vi, mc, Vc, ract)
```
Demonstration: rLSfilter II

calibration b
limiting $S_{\{t\mid t-1\}}$
$SS \leftarrow \text{limitS}(S, F, Q, Z, Vi)$
by efficiency in the ideal model
$(B1 \leftarrow \text{rLScalibrateB}(\text{eff}=\text{eff1}, S=SS, Z=Z, V=Vi))$
by contamination radius
$(B2 \leftarrow \text{rLScalibrateB}(r=r1, S=SS, Z=Z, V=Vi))$

evaluation of rLS
rer1.id \leftarrow rLSFilter(Yid, a, Ss, F, Q, Z, Vi, B1b
rer1.re \leftarrow rLSFilter(Yre, a, Ss, F, Q, Z, Vi, B1b
rer2.id \leftarrow rLSFilter(Yid, a, Ss, F, Q, Z, Vi, B2b
rer2.re \leftarrow rLSFilter(Yre, a, Ss, F, Q, Z, Vi, B2b)
ideal situation

black: real state,
red: class. Kalman filter

AO-contaminated situation

green: rLS filter (B1),
blue: rLS filter (B2)

